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1 Introduction

The field of machine learning is constantly evolving and spreading into a growing applica-
tion sector, such as computer vision, automatic speech recognition and natural language
processing [2]. This success of machine learning technologies has been driven by the wealth
of available data generated by modern devices such as mobile phones. Mobile phones have
access to a large amount of data, however, this data is often privacy sensitive [1] and
therefore unsuitable for a central machine learning approach. Conventionally, the data is
collected in a centralized storage violating privacy rights and a global model is trained on
this collection of data. McMahan et al. [1] introduced an alternative that does not collect
the data nor allow a server to access the data and termed this decentralized approach Fed-
erated Learning (FL).

In the following, we want to characterize FL and describe a typical FL process. We assume
that K clients, K ∈ N≥2, with their respective local datasets, wish to collaboratively train
a shared machine learning model [2]. In the whole FL process, the local data of a client
does not leave that client and the data is not exposed to a server or other clients. On
each client, a local model is trained on the respective data. A client can transfer its model
to a server. The aim is to encrypt the transferred knowledge such that the data cannot
be re-engineered. The server then aggregates the knowledge exchange to build the global
model. The performance of this aggregated model should approximate the performance of
a single model trained on the collection of all data. However, we allow the FL approach
to perform a little less than the corresponding central approach, collecting all data and
training a single model.

A typical FL process consists of the following parts [3], see figure 1.1. A central server
orchestrates the learning process and repeatedly executes the following steps until a stop-
ping criterion is satisfied:

1. Client selection: The server selects a set of clients.

2. Broadcast: The server sends the current global model to each of the selected clients.

3. Client computation: Each of the selected clients trains the downloaded global
model on its local data and updates the model.

4. Aggregation: Each of the selected clients sends its updated model back to the server
that aggregates these updated models.

5. Model Update: The server updates the global model based on the aggregation.
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1 Introduction

Figure 1.1: Typical FL process

FL has primarily focused on supervised learning tasks where labels are available on each
client [3]. Therefore, we will only consider a supervised learning task throughout this work.
Supervised learning refers to a machine learning problem on labeled data. Therefore, the
data is represented in pairs of observations (x, y) for features x in a sample space X and
labels y in a label space Y. Supervised learning aims at estimating a functional mapping
to predict the label y of a given feature x. In the FL setting, we denote

Dk := DX ,k ×DY,k ⊆ X × Y

as the dataset of client k with 1 ≤ k ≤ K.

The performance of a machine learning model strongly depends on the amount of available
data. However, in many machine learning applications, it is hard to obtain the amount of
data that is required to empower machine learning applications [2]. Modern devices, such
as mobile phones, that naturally collect a large amount of data through several sensors,
including cameras and microphones [1], provide an opportunity for machine learning ap-
plications. However, the data is usually privacy sensitive. The public awareness of data
protection is growing and users are increasingly concerned about the misuse of their private
information [2]. Since FL decouples model training from the need for direct access to the
local data [1], FL allows users to improve the usability of private devices while preserving
user privacy and data security [2]. Also, in an industrial context, data is often only avail-
able to a limited degree for individual machines motivating organizations to collaborate
with industry partners to reach a satisfying level of performance without sharing vulnera-
ble business information [8].

However, FL does not only bring benefits but also faces a number of major challenges,
some of which are only present in FL in an industrial context, while others plague the
FL setting in general. In a typical FL setting, and especially in an industrial context,
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1 Introduction

we will encounter clients with non-identically distributed data. The performance of FL
decreases significantly for non-identically distributed data [12]. For example, industrial
assets typically produce different anomalous operating conditions resulting in dissimilarity
in the label distribution. Zhao et al. [12] proved that a highly skewed label distribution
significantly reduces the accuracy of the aggregated model in FL. In an industrial context,
the feature distribution plays a key role in data heterogeneity. For example, variations in
machine type, operational- and environmental conditions influence the feature distribution.
In 2020, Hiessl et al. [8] identified challenges of FL in an industrial context and introduced
Industrial Federated Learning (IFL) that adjusts FL to a learning task in an industrial con-
text. In contrast to FL, in step 1 of the typical FL process, the server does not arbitrarily
select the clients but only orchestrates knowledge exchange between clients that have suffi-
ciently similar data to prevent a decrease of the aggregated model performance. Hiessl et al.
[8] refer to the set of clients that collaboratively train a machine learning model as a cohort.

The performance of a machine learning algorithm is highly sensitive to the choice of its
hyperparameters. Therefore, hyperparameter selection is a crucial task in the optimization
of knowledge-aggregation algorithms. In a FL setting, hyperparameter optimization poses
new challenges and is a major open research area. In this work, we want to investigate the
impact of different hyperparameter optimization approaches in an IFL system.

We believe that the data distribution influences the choice of the best hyperparameter
configuration and suggest that the best hyperparameter configuration for a client might
differ from another client based on individual data properties. Therefore, we want to
investigate a local hyperparameter optimization approach that – in contrast to a global
hyperparameter optimization approach – allows every client to have its own hyperparam-
eter configuration. The local approach allows us to optimize hyperparameters prior to the
federation process reducing communication costs. Communication is considered a critical
bottleneck in FL. Clients are usually limited in terms of communication bandwidth enhanc-
ing the importance of reducing the number of communication rounds or using compressed
communication schemes for the model updates to the central server. Dai et al. [4] intro-
duced Federated Bayesian Optimization (FBO) extending Bayesian optimization to the FL
setting. In FBO, every client locally uses Bayesian optimization to find the optimal hy-
perparameter configuration. Additionally, each client is allowed to request for information
from other clients. Dai et al. [4] proved a convergence guarantee for this algorithm and its
robustness against heterogeneity. However, until now, there is no research on the impact
of global and local hyperparameter optimization of a FL task with heterogeneous clients.
Therefore, we compare a local hyperparameter optimization approach to a global hyperpa-
rameter optimization approach, optimizing hyperparameters in the federation process.

The aim of this work is i) to analyse challenges and formal requirements in FL, and in
particular in IFL ii) evaluate the performance of an IoT sensor based classification task
in an IFL system iii) investigate a communication efficient hyperparameter optimization
approach iv) compare different hyperparameter optimization algorithms. Therefore, we
want to answer the following questions.
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1 Introduction

Q1: Does FL work for an IoT sensor based anomaly classification task on industrial assets
with non-identically distributed data in an IFL system with a cohort strategy?

Q2: Can we assume that the global and local hyperparameter optimization approach de-
liver the same hyperparameter configuration in an identically distributed FL setting?

Q3: Can we reduce communication costs in the hyperparameter optimization of a non-
identically distributed classification task in context of FL by optimizing a hyperpa-
rameter locally prior to the federation process?

Q4: Does Bayesian optimization outperform grid search, both in a global and local ap-
proach of a non-identically distributed IoT sensor based classification task?
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2 Optimization Algorithms

2.1 Algorithmic Challenges and Formal Requirements

In FL, new algorithmic challenges arise that differentiate the corresponding optimization
problem from a distributed optimization problem. In distributed learning settings, major
assumptions regarding the training data are made which usually fail to hold in a FL setting
[5]. These assumptions, however, play a crucial part in the analysis of optimization algo-
rithms and can have a strong influence on their performances. Moreover, possibly expensive
and unreliable communication poses further challenges for optimization algorithms. The
optimization problem in FL is therefore referred to as federated optimization emphasiz-
ing the difference to distributed optimization [1]. In an IFL setting, additional challenges
regarding industrial aspects arise. In this section, we want to formulate the federated opti-
mization problem and discuss the algorithmic challenges of FL in general, and in particular
of IFL.

2.1.1 Problem Formulation

We consider a supervised learning task with features x in a sample space X and labels y
in a label space Y. We assume that we have K available clients, K ∈ N≥2, with

Dk := DX ,k ×DY,k ⊆ X × Y

denoting the dataset of client k with 1 ≤ k ≤ K and nk := |Dk| denoting the cardinality of
the client’s dataset. Let Q denote the distribution over all clients, and let Pk denote the
data distribution of client k. We can then access a specific data point by first sampling
a client k ∼ Q and then sampling a data point (x, y) ∼ Pk [3]. Then, the local objective
function is

Fk(w) := IE
(x,y)∼Pk

[f(x, y, w)]

where w ∈ Rd represents the parameters of the machine learning model and f(x, y, w)
represents the loss of the prediction on sample (x, y) for the given parameters w. Typically,
we wish to minimize

F (w) =
1

K

K∑
k=1

Fk(w).

Let n :=
∑K

k=1 nk denote the total number of samples distributed over all clients.
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2 Optimization Algorithms

2.1.2 Federated Learning

In the next section, we want to discuss the algorithmic challenges of solving a federated
optimization problem as described above. One of the major challenges concerns data het-
erogeneity. In general, we cannot assume that the data is identically distributed over the
clients, that is Pk = Pl for all k, l = 1, . . . ,K. Therefore, Fk might be an arbitrarily bad
approximation of F [1]. In real-world problems, the data Dk on a given client k depends on
individual conditions, thus this local dataset is not necessarily representative of the dataset
Dl of client l.

In the following, we want to analyse different non-identically distributed settings as demon-
strated by Kairouz et al. [3] assuming that we have an IoT sensor based anomaly classifica-
tion task in an industrial context. Given the distribution Pk, let P kX ,Y denote the bivariate

probability function, let P kX and P kY denote the marginal probability function respectively.
Using the conditional probability function P kY|X and P kX|Y , we can now rewrite the bivariate
probability function as

P kX ,Y(x, y) = P kY|X (y|x)P kX (x) = P kX|Y(x|y)P kY(y)

for (x, y) ∈ X × Y. This allows us to characterise different settings of non-identically dis-
tributed data:

Feature distribution skew

We assume that P kY|X = P lY|X holds for all clients k and l. However, P kX = P lX possi-
bly fails to hold for all clients k and l. Clients that have the same anomaly classes might
still have differences in the measurements due to variations in sensor and machine type.

Label distribution skew

We assume that P kX|Y = P lX|Y holds for all clients k and l. However, P kY = P lY possi-
bly fails to hold for all clients k and l. The distribution of labels might vary across clients
as clients might experience different anomaly classes.

Same label, different features

We assume that P kY = P lY holds for all clients k and l. However, the conditional dis-
tribution might vary across clients. We cannot assume that P kX|Y = P lX|Y holds for all
clients k and l. The same anomaly class can have significantly different features for dif-
ferent clients due to variations in machine type, operational- and environmental conditions.

Same features, different label

We assume that P kX = P lX holds for all clients k and l. However, the conditional dis-
tribution might vary across clients. We cannot assume that P kY|X = P lY|X holds for all
clients k and l. The same features can have different labels due to operational- and envi-
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2 Optimization Algorithms

ronmental conditions, variation in manufacturing, maintenance et cetera.

Quantity skew

We cannot assume that different clients hold the same amount of data, that is nk = nl for
all k, l = 1, . . . ,K. Some clients will generate more data than others resulting in different
amounts of local data.

In real-world problems, we expect to find a mixture of these non-identically distributed
settings.

In FL, heterogeneity does not exclusively refer to a non-identical data distribution, but
also addresses violations of independence assumptions on the distribution Q [3]. Due to
limited, slow and unreliable communication on a client, the availability of a client is not
guaranteed for all communication rounds. The availability of a client strongly depends on
technical requirements and on local conditions, e.g. a client might lose internet connec-
tion at day time and might have a better internet connection at night time. Then, the
distribution Q is not independent [3]. Also, an active client can drop out of training at
a given communication round. Similarily, a new client fulfilling the respective technical
requirements can participate in training at a given communication round.

Communication is considered a critical bottleneck in FL [3]. In each communication round,
the participating clients send a full model update w back to the central server for aggrega-
tion. In a typical FL setting, however, the clients are usually limited in terms of commu-
nication bandwidth. Consequently, it is crucial to minimize the communication costs by
reducing the number of communication rounds or using compressed communication schemes
for the model updates to the central server on each client. At the same time, clients have
a relatively fast processor and their local dataset Dk is relatively small compared to the
total dataset size n [2]. Thus, the obvious approach is to use additional computation to
reduce the number of communication rounds.

In traditional approaches, the performance of a machine learning model is most commonly
defined as the model accuracy. Since communication in federated learning is much more
expensive than computation, it is crucial to minimize communication. Therefore, we define
performance as the highest classification accuracy achieved after a given amount of com-
munication. The communication can either be in terms of communication rounds between
a server and its clients, or uploaded models from each client [3].

2.1.3 Industrial Federated Learning

In an industrial setting, FL experiences challenges that specifically occur in an industrial
context. Industrial assets have access to a wealth of data suitable for machine learning
models, however, the data on an individual asset is typically limited and private in nature.
In addition to sharing the data within the company, Hiessl et al. [8] propose sharing the
data with an external industry partner. FL leaves possibly critical business information
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2 Optimization Algorithms

distributed on the individual client (or within the company) and simultaneously improves
the performance of the machine learning model on the client. However, in section 2.2 we
have already seen that heterogeneity is a major challenge in FL. Zhao et al. [12] proved
that a highly skewed label distribution significantly reduces the accuracy of the aggregated
model in FL. In an industrial context, we expect to find heterogeneous clients due to vary-
ing environmental and operational conditions on different assets. Therefore, Hiessl et al.
[8] introduced a modified approach of FL in an industrial context and termed it Indus-
trial Federated Learning (IFL). IFL does not allow arbitrary knowledge exchange between
clients. Instead, the knowledge exchange only takes place between clients that have suffi-
ciently similar data to prevent a decrease of the global model performance. Hiessl et al.
[8] refer to this set of clients as a cohort. In IFL, individual clients do not only profit from
collaboratively training a global model on a larger amount of data, but the data is also suf-
ficiently similar preventing negative knowledge transfer. We expect the federated learning
approach in such a cohort to approximate the corresponding central learning approach.

For example, we consider an industrial classification problem. The task is the classifi-
cation of the operating condition of an industrial asset. The data is measured by a sensor
that is attached to the asset. We expect to find differences in the measurements due to
variations in sensor and asset type, and therefore differences in the feature distribution.
Also, each asset generates healthy data samples and anomalous data samples. In reality,
the anomalous conditions differ from asset to asset. Therefore, we expect to find differences
in the label distribution.

Apart from the data dissimilarity, another challenge arises in FL in an industrial con-
text. For further analysis, we consider an industrial classification problem: Let X ⊂ Rn
denote the sample space and let Y denote the label space. We assume without loss of
generality that Y = {1, . . . , C} ⊂ N for a constant C ∈ N where y indicates a condition,
such as healthy or different types of anomalies. Let x denote a data point generated by
an asset in an industrial context. In a classification problem, we are interested in correctly
classifying the exact condition. Typically, a machine learning model is trained to minimize
the cross-entropy loss. The standard categorical cross-entropy loss function is given by [10]

E(w) := − 1

N

C∑
c=1

N∑
n=1

ycn log
(
hw(xn, c)

)
,

where ycn is the target label for data sample n for class c, xn is the input feature for data
sample n and hw is the model with weights w for class c. Naturally, we expect the number of
healthy data samples to be significantly larger than the number of anomalous data samples
[9]. The rare anomalous samples are more valuable than the numerous healthy samples. A
new hyperparameter γc allows us to penalize individual classification errors differently. We
can then rewrite the weighted categorical cross-entropy loss function as [10]

E(w) := − 1

N

C∑
c=1

N∑
n=1

λcy
c
n log

(
hw(xn, c)

)
,

where λc is the weight for class c.
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2 Optimization Algorithms

2.2 Federated Averaging

In the following, we will present the Federated Averaging (FedAvg) algorithm according
to McMahen et al. [1], a form of stochastic gradient descent (SGD) and the state-of-the-
art algorithm in FL. McMahan et al. [1] introduced the FedAvg algorithm for federated
optimization and responded to the challenges of FL. In section 2.1.2, we have seen that
communication is a critical bottleneck in FL and that an obvious approach for reducing
communication costs is to increase computation. McMahan et al. [1] proposed two ways of
adding computation: increased parallelism (using more clients working independently be-
tween each communication round) and increased computation on each client. The FedAvg
algorithm addresses both approaches by controlling the fraction C of clients that perform
computation in each communication round r, the number of local epochs E on each client
and the local mini-batch size B. By increasing the fraction C we can increase parallelism
and by increasing the number of local epochs E and the mini-batch size B we can increase
computation on each client.

Let K denote the number of clients, R the number of communication rounds, Dk the
local dataset of client k, and η the learning rate. Let wkr denote the machine learning
model’s weight of client k in communication round r and let wr =

∑K
k=1

nk
n w

k
r denote the

aggregated model weight in communication round r. Then, the optimization problem is

min
w∈Rd

F (w) = min
w∈Rd

nk
n

K∑
k=1

Fk(w)

with

Fk(w) :=
1

nk

nk∑
i=1

fi(w),

where fi(w) := L(xi, yi, w) is defined as the loss of the prediction on sample (xi, yi) for the
given model weight w [2].

In algorithm 1, we give the pseudocode of the FedAvg algorithm. First, the server initializes
a model weight w0 ∈ Rd. Then, for each communication round r, the server determines a
randomly selected subset Sr of C ·K clients and sends the latest model weight wr to all
clients k ∈ Sr. Now, each client k ∈ Sr executes the following steps: The client obtains
the latest model weight w from the server. Then the dataset Dk is randomly divided into
nk
B batches. For each epoch, the client updates the model weight w = w − η∇L(b, w) for
all batches b ∈ B. The client sends the model update back to the server. The server then
aggregates all model weights wr =

∑K
k=1

nk
n w

k
r .
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2 Optimization Algorithms

Algorithm 1: Federated Averaging

Server executes:
initialize w0

for each communication round r = 1, . . . , R do
Sr := random set of C ·K clients
for each client k ∈ Sr do

wkr := ClientUpdate(k,wr−1)
end

wr :=
∑K

k=1
nk
n w

k
r

end
Clients execute:
ClientUpdate(k,w) :
B := set of batches of size B (randomly divide dataset Dk into batches)
for each epoch i = 1, . . . , E do

for each batch b ∈ B do
w := w − η∇L(b, w)

end

end
return w

2.3 Hyperparameters

The performance of a machine learning algorithm is highly sensitive to the choice of hy-
perparameters. Therefore, hyperparameter selection is a crucial task in the optimization of
knowledge-aggregation algorithms. Hyperparameters are parameters that control the ma-
chine learning algorithm and have to be defined prior to the learning process. Considering
the FedAvg algorithm in section 2.2, we have to define prior to the training process the
fraction C of clients that performs computation, the number R of communication rounds,
the number E of local epochs, the mini-batch size B, the learning rate η, and all hyperpa-
rameters regarding the model architecture (the number of hidden layers, dropout rate etc.).
In contrast, model parameters are learned during the training process. In the FedAvg al-
gorithm, the weight w of the machine learning model is learned during the training process.

Let us formulate the hyperparameter optimization task: Let Λ ⊂ RN denote the hyperpa-
rameter search space and let λ ∈ Λ denote a hyperparameter configuration. We wish to
find λ∗ ∈ Λ such that

λ∗ = arg min
λ∈Λ

[L(Dvalid,Aλ(Dtrain))]

where L is defined as the loss function, Dvalid is the validation dataset, Dtrain is the training
dataset, and Aλ is the machine learning algorithm trained on dataset Dtrain with hyper-
parameter configuration λ. We train the algorithm Aλ on the training dataset Dtrain with
hyperparameter configuration λ and evaluate its performance by computing the loss of the
resulting model on the validation dataset Dvalid. Finally, we select the hyperparameter
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2 Optimization Algorithms

configuration that yields the minimal loss.

Hyperparameter search in a knowledge-aggregation algorithm is a challenging optimization
problem. We do not have access to the gradient of the loss function with respect to the
hyperparameter configuration and cannot apply gradient methods. Also, since we have to
train the model on the training dataset and then evaluate its performance on the validation
dataset, evaluation costs can be extremely expensive. Furthermore, we will typically find
a mixture of different variable types in a hyperparameter configuration λ = λ1 × · · · × λN .
A hyperparameter can be a discrete variable, λi ∈ N, such as the number of hidden layers,
a continuous variable, λi ∈ R, such as the learning rate, and a categorical variable, such as
the choice of the optimizer. Moreover, a hyperparameter λi can depend on other hyperpa-
rameters, such as hyperparamters regarding the model architecture.

In this work, we consider the following hyperparameters regarding the FedAvg algorithm
2.2:

– the fraction C of clients that perform computation,

– the number R of communication rounds,

– the number E of epochs,

– the batch size B,

– the learning rate η,

– the number m of hidden layers in the machine learning model,

– the dropout rate d, and

– the weight γ of the loss function.

We note that the number of epochs E is crucial for reducing the risk of overfitting, the
effect of fitting the model too closely to the training dataset Dtrain. Since we train the
model on the training dataset, the loss decreases on the training dataset. However, in the
case of overfitting, the model does not perform well on the validation dataset, the unknown
data to the model. Therefore, we specify an arbitrarily large number E and apply early
stopping, a method that stops the learning process when the loss is not decreasing on the
validation dataset for a certain number of epochs. In FL, the weights of the global model
are updated in each communication round on the server by aggregating the weights of the
local models. To ensure that the global model performs well, it is therefore particularly
important to avoid overfitting of the local models. We consider another hyperparameter
for early stopping : the number of communication rounds R. In IFL, we expect that the
performance of the global model improves with an increasing number of communication
rounds R. Therefore, we choose a sufficiently large number of communication rounds and
apply early stopping. We note that we have restricted this assumption to an IFL setting.
In IFL, we limit the knowledge exchange to clients that have sufficiently similar data and
therefore prevent negative knowledge transfer. However, in a FL setting, we cannot assume
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2 Optimization Algorithms

that the data is sufficiently similar. Thus, the performance of the global model might see
a significant decrease with an increasing number of communication rounds [12].

2.3.1 Hyperparameter Optimization Algorithms

In this section, we want to present the most common approaches to hyperparameter opti-
mization in machine learning. All of these approaches address challenges of hyperparam-
eter search in knowledge-aggregation algorithms, e.g. no access to the gradient. There-
fore, each hyperparameter optimization algorithm selects a hyperparameter configuration
in the search space, performs the learning process on the training dataset and evaluates
the model’s performance on a validation dataset. However, the difference lies in the way
of selecting the next hyperparameter for evaluation.

We assume that we wish to optimize the hyperparameters λi for i = 1, . . . , N . Let Λi
denote the search space for hyperparameter λi and let λ := λ1 × · · · × λN denote a hyper-
parameter configuration in the search space Λ := Λ1 × · · · × ΛN .

Grid search

The simplest and most obvious hyperparameter optimization approach is grid search.
We manually specify for each hyperparameter λi a discrete subset Gi ⊂ Λi, form a grid
G := G1 × · · · × GN ⊂ Λ and evaluate each hyperparameter configuration λ ∈ G. Grid
search suffers from the curse of dimensionality : the number of evaluations

∏N
i=1 |Gi| grows

exponentially and the efficacy decreases with an increasing number of hyperparameters.
However, it is optimal for optimizing a hyperparameter configuration λ = λ1 × · · · × λN
where N is sufficiently small. In figure 2.1, the grid search algorithm is illustrated. Assum-
ing N := 2, we wish to optimize two hyperparameters λi, i = 1, 2. Therefore, we evaluate
each configuration λ := λ1 × λ2 in that grid.

Figure 2.1: Example of grid search in two
dimensions

12



2 Optimization Algorithms

Random search

A more advanced approach is random search. We manually specify a range Ri ⊆ Λi
for each hyperparameter λi and then randomly sample a hyperparameter configuration
λ ∈ R := R1 × · · · × RN . Instead of evaluating each hyperparameter configuration λ in a
grid, it executes random searches in the search space R. In figure 2.2, the random search
algorithm is illustrated. Again, we wish to optimize two hyperparameters λi, i = 1, 2. Now,
we randomly select a hyperparameter configuration λ := λ1 × λ2 in the search space R.

Figure 2.2: Example of random search in
two dimensions

Random search addresses the inefficiency of grid search in high-dimensional search spaces.
It does not suffer of the curse of dimensionality and solves the problem of a low effec-
tive dimensionality, a hyperparameter λi being less sensitive to changes than another [7].
Figure 2.3 illustrates the grid search and the random search algorithm when dealing with
a low effective hyperparameter. We wish to optimize f(λ1, λ2) := g(λ1) + h(λ2) for two
hyperparameters λi, i = 1, 2. We assume that λ1 (the important parameter) is more sensi-
tive to changes and has more impact on the performance of the machine learning model f ,
and λ2 (the unimportant parameter) is almost insensitive to changes. Therefore, we have
f(λ1, λ2) ≈ g(λ1). Above each square g(λ1) is shown in green, and left of each square h(λ2)
is shown in yellow. In the optimization algorithm, we evaluate f(λ1, λ2) for 9 different
hyperparameter configurations λ := λ1 × λ2. While grid search evaluates g(λ1) only for 3
distinct values λ1, random search evaluates g(λ1) for 9 distinct values λ1.

Bayesian Optimization

The benefits of grid search and random search lie in their simplicity. However, we would
like to use past configurations to determine the next configuration in the hyperparameter
search space. While grid search and random search do not profit of previous configurations,
Bayesian optimization includes past configurations in the decision of choosing the next
configuration. Therefore, it avoids unnecessary evaluations and requires fewer iterations to
find the best hyperparameter configuration [6]. Bayesian optimization is a sequential search
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2 Optimization Algorithms

Figure 2.3: Example of grid search and random search
in two dimensions with a low effective di-
mension [7]

framework [11] that balances exploitation and exploration of the search space. The idea is
to exploit our knowledge by investigating more closely promising regions. Simultaneously,
we want to explore regions of the search space with high uncertainty ensuring we do not
miss the global optimum. An overuse of exploitation put us at risk of getting caught in a
local optimum, the opposite of leaving the global optimum.

In Bayesian optimization, we construct a posterior distribution of functions that approx-
imates the objective function. A widely used choice are Gaussian processes. We call a
stochastic process Gaussian if and only if all finite sub-collections of random variables have
a multivariate Gaussian distribution. Similarly to a Gaussian distribution, a Gaussian pro-
cess f(x) ∼ GP (m(x), k(x, x′)) is completely defined by a mean function m : X → R and
a covariance function k : X × X → R [13].

A widely used covariance function is the exponential square function

k(x, x′) := exp(−1

2
‖x− x′‖22)

where ‖·‖2 denotes the Euclidean norm. By choosing the covariance function, we can make
assumptions about the objective function.

Let X := {xi|i = 1, . . . , n} be a set of n training points and let

K(X,X) :=


k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) . . . k(xn, xn)


denote the n×n covariance matrix. Furthermore, let X∗ denote the set of n∗ test points,
K(X∗, X∗) denote the n∗×n∗ covariance matrix, and K(X,X∗) denote the n×n∗ matrix
of covariances for all pairs of training and test points. Analogously, we define K(X∗, X).

14



2 Optimization Algorithms

Then, the joint distribution of the training outputs f and the test outputs f∗ is given by[
f
f∗

]
∼ N

(
0,

(
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

))
.

We obtain the posterior distribution of functions by conditioning the joint Gaussian distri-
bution [13]

f∗|X∗, X, f ∼ N
(
K(X∗, X)K(X,X)−1f,K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)

)
.

Then, the posterior distribution is used to determine the next sample point. We choose a
sample point according to a criterion. The criterion is represented by an so-called acquisi-
tion function. Therefore, in Bayesian optimization, we transform the optimization problem
into a cheaper proxy optimization problem, optimizing the acquisition function. The acqui-
sition function balances exploitation and exploration indicating the utility of sample points.
We choose the sample point with the highest utility for the next evaluation. Based on the
acquisition function, the utility is high for sample points in promising regions (exploitation)
and for sample points in unexplored regions (exploration).

Now, we can formulate the Bayesian optimization algorithm [14]:

1. We initialize a Gaussian process.

2. We find a sample point that maximizes the utility of the acquisition function based
on the current prior distribution.

3. We evaluate the objective function for the chosen sample point.

4. We update the Gaussian process and obtain the posterior distribution.

We repeat step 2, 3 and 4 for multiple iterations.

2.4 Hyperparameter Optimization Approaches in an IFL System

In a FL setting, hyperparameter optimization poses new challenges and is a major open
research area. In traditional machine learning approaches, hyperparameter optimization
often only focuses on the improvement of model accuracy rather than communication effi-
cacy, and computing efficacy for each client [3]. However, in section 2.1.2, we have linked
the performance of a machine learning model in FL to communication costs. Therefore,
Kairouz et al. [3] propose that further research in FL should consider efficient hyperparam-
eter optimization methods.

Kairouz et al. [3] propose an approach to tackle this challenge. The introduction of po-
tential additional hyperparameters (the number of communication rounds, the number of
participating clients per communication round etc.) motivates a closer analysis of the hy-
perparameter space in the context of FL. Kairouz et al. [3] therefore introduce the idea
of a separate optimization of hyperparameters. We now want to further investigate this
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approach.

In an effort to reduce communication costs, a critical bottleneck in FL, we investigate
a communication efficient hyperparameter optimization approach. We believe that the
data distribution influences the choice of the best hyperparameter configuration and sug-
gest that the best hyperparameter configuration for a client might differ from another client
based on individual data properties. Therefore, we want to investigate a local hyperpa-
rameter optimization approach that – in contrast to a global hyperparameter optimization
approach – allows every client to have its own hyperparameter configuration. The local
approach allows us to optimize hyperparameters prior to the federation process reducing
communication costs.

Dai et al. [4] investigated a communication efficient local hyperparameter optimization
approach and introduced Federated Bayesian Optimization (FBO) extending Bayesian op-
timization to the FL setting. In FBO, every client locally uses Bayesian optimization to
find the optimal hyperparameter configuration. Additionally, each client is allowed to re-
quest for information from other clients. Dai et al. [4] proved a convergence guarantee for
this algorithm and its robustness against heterogeneity. However, until now, there is no
research about the impact of global and local hyperparameter optimization.

In the LocalHPO algorithm 2, we perform local hyperparameter optimization. We op-
timize the hyperparameter configuration λk for each client k. In the GlobalHPO algorithm
3, we perform global hyperparameter optimization. We optimize the hyperparameter con-
figuration λ in the federation process. The LocalOptimization method in the LocalHPO
algorithm 2 and the GlobalOptimization method in the GlobalHPO algorithm 3 can be
based on any hyperparameter optimization algorithm.

Algorithm 2: LocalHPO

Server executes:
initialize w0

for each client k = 1, . . . ,K do
λk := LocalOptimization(k,w0)

end

return (λk)Kk=1

Algorithm 3: GlobalHPO

Server executes:
λ := GlobalOptimization()
return λ

We want to differentiate between a hyperparameter λi that is globally constant, assuming
that all clients have the same value for λi, and a hyperparameter λki that is not globally
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constant – due to heterogeneity in the data – and whose value depends on a client k. Here,
λki denotes the hyperparameter λi on client k. Let λk denote the hyperparameter con-
figuration on client k. This motivates the following definition: We call a hyperparameter
λi

– global, if λki = λli for all k, l ∈ {1, . . . ,K},

– local, if there exist k, l ∈ {1, . . . ,K} with k 6= l such that λki 6= λli.

We notice that this differentiation is only relevant for settings with non-identically dis-
tributed clients. In an identically distributed setting, we assume that a hyperparameter
configuration that works for one client also works for another client. In our experiments,
we verified this assumption for a proxy dataset.

In addition to the classification into local and global hyperparameters, we can distinguish
between model hyperparameters, parameters that concern the machine learning model,
and federation hyperparameters, parameters that concern the federation process. By defi-
nition, a local hyperparameter must be a model hyperparameter. A global hyperparameter,
however, can either be a model hyperparameter or a federation hyperparameter. While a
federation hyperparameter can only be optimized in the federation process, a model hy-
perparameter can be optimized locally on each client prior to the federation process. For
example, we classify the hyperparameters we considered in section 2.3 in the following way:

C fraction of participating clients federation/global

R number of communication rounds federation/global

E number of epochs model/local

B batch size model/local

η learning rate model/local

m number of hidden layers model/local

d dropout rate model/global

γ weights of loss function model/local

Table 2.1: Example of a classification of hyperparameters in a non-identically distributed
FL setting
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In the next section, we want to make our benchmark design explicit and present our ex-
perimental setup. We will present the machine learning tasks including the data partition
of the training data, the machine learning models, the optimization algorithms and our
experiments. We considered an image classification task and an IoT sensor based anomaly
classification task on industrial assets. For the image classification task we have chosen
a proxy dataset, the MNIST dataset of handwritten digits. Finally, to demonstrate the
effectiveness of the IFL system, we evaluated a real-world problem with a natural partition
of data.

3.1 Data

The MNIST dataset consists of handwritten digits and has 60 000 training examples and
10 000 test examples. In order to test the IFL system on this proxy dataset, we still need
to specify on how to distribute the data over artificially designed clients. To systematically
evaluate the effectiveness of the IFL system and the cohort strategy, we simulated an iden-
tical data distribution. This refers to shuffling the data and partitioning the data into 10
clients, each receiving 6 000 examples.

Following the approach of McMahan et al. [1], we applied a convolutional neural network
with the following settings:

– 2 convolutional layers with 32 and 64 filters of size 5×5 and a ReLu activation function,
each followed by a max pooling layer of size 2×2,

– a dense layer with 512 neurons and a ReLu activation function,

– a dense layer with 10 neurons and a softmax activation function.

The industrial task concerns IoT sensor based anomaly classification on industrial assets.
Figure 3.1 illustrates the pump and sensor setup. We considered multiple centrifugal pumps
with sensors placed at different positions, in different directions to record three axis vibra-
tional data in a frequency of 6644 Hz. Per minute, 512 samples were collected. The task
is the classification of the operating condition of the pump. Therefore, we operated the
pumps under 6 varying conditions, including 3 healthy states and 3 anomalous states. More
precisely, the measurements include the following operating conditions: the healthy data
with full load (50 m3 h−1), the healthy data with partial load (37.5, 25 and 12.5 m3 h−1),
the healthy data measured in idle state (0 m3 h−1), the anomalous data measured during
hydraulic blocking of the pump, the anomalous data measured during dry running of the
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pump, and the anomalous data measured during cavitation of the pump. In our experi-
ments, we only consider the data measured by sensor 3. A client is either assigned data
of an asset in a measurement, or data of several assets in a measurement ensuring that
each client sees all operating conditions. However, since in the process of measurement,
the assets were turned off and cooled down overnight, the sensors were removed and reat-
tached, the screws were removed an reattached to the asset, and the assets were completely
dismantled and rebuilt, we consider the data to be non-identically distributed regarding its
feature distribution.

Figure 3.1: Pump and sensor setup

To increase robustness and rotational invariance of the machine learning model, we remapped
the 3-dimensional vibrational data from the sensor coordinate system si into the world co-
ordinate system wi using the Kabsch algorithm [15] minimizing the following loss function
L for a given rotation matrix C:

L(C) =

n∑
i=1

‖si − Cwi‖22.

Then, we applied a sliding window such that the remapped 1×512 input is artificially
increased to a 16×256 input with window size of 256 and an overlap of 16 steps. Further,
we extracted the Melfrequency cepstral coefficients (MFCCs) and applied the synthetic
minority oversampling technique (SMOTE). Finally, we normalized the resulting MFCCs
features between [−1, 1] based on a transformation resulting in a gaussian distribution.

We applied an artificial neural network with the following settings:

– a dense layer with 64 neurons and a ReLu activation function,

– a dropout layer with a dropout rate of 0.4,

– a dense layer with 6 neurons and a ReLu activation function,

– a dropout layer with a dropout rate of 0.4,

– a softmax activation function.
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3.2 Algorithms

Our evaluations include the FedAvg algorithm 1, and the hyperparameter optimization
approaches LocalHPO 2 and GlobalHPO 3 presented in section 2.4. We implemented these
approaches based on grid search and Bayesian optimization. In this section, we give their
pseudocode. We searched for the learning rate η with fixed C, R, E, and B.

In algorithm 4, we give the pseudocode of the LocalOptimization method in LocalHPO
2 based on the grid search algorithm with a fixed grid G. We iterate through the grid
G, train the model on the training data of client k based on the ClientUpdate method
used in the FedAvg algorithm 1 with the learning rate η as an additional argument, and
validate the performance of the model wη on the validation data Dkvalid of client k. Finally,
the learning rate that yields the highest accuracy Aη on the validation data is selected.
Here, wη denotes the resulting model trained on the training data with learning rate η
and A(Dkvalid, wη) denotes the accuracy of the model tested on the validation data Dkvalid of
client k.

Algorithm 4: Local Grid Search

LocalOptimization(k,w0) :
for each learning rate η ∈ G do

wη := ClientUpdate(k,w0, η)

Aη := A(Dkvalid, wη)

end
η∗k := arg max

η∈G
Aη

return η∗k

In algorithm 5, we give the pseudocode of the GlobalOptimization method in GlobalHPO
3 based on the grid search algorithm with a fixed grid G. We iterate through the grid, per-
form the FedAvg algorithm 1 with the learning rate η as an additional argument, validate
the performance of the model wη on the validation data Dkvalid for all clients k = 1, . . . ,K
and compute the average accuracy of all clients. Finally, the learning rate that yields the
highest average accuracy Aη is selected.

In algorithm 6, we give the pseudocode of the LocalOptimization method in LocalHPO
2 based on Bayesian optimization. The objective function f takes the learning rate η as
an argument, trains the model on the training data of client k based on the ClientUpdate
method used in the FedAvg algorithm 1 with the learning rate η as an additional argument,
validates the performance of the model w on the validation data Dkvalid of client k, and re-
turns the resulting accuracy. We initialize a gaussian process GP for the objective function
f with ninit sample points. Then, we find the next sample point ηninit+i by maximizing the
acquisition function, evaluate f(ηninit+i), and update the gaussian process GP . Finally, we
select the learning rate η∗ that yields the highest average accuracy. We repeat this for niter

iterations.
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Algorithm 5: Global Grid Search

GlobalOptimization() :
for each learning rate η ∈ G do

wη := FederatedAveraging(η)
for each client k = 1, . . . ,K do

Akη := A(Dkvalid, wη)

end

Aη := 1
K

∑K
k=1A

k
η

end
η∗ := arg max

η∈G
Aη

return η∗

Algorithm 6: Local Bayesian Optimization

LocalOptimization(k,w0) :
initialize a gaussian process GP for f
evaluate f at ninit initial points
for i = 1, . . . , niter do

find sample point ηninit+i that maximizes acquisition function
evaluate objective function f at ηninit+i

update the gaussian process GP

end
η∗ := arg max

i=1,...,ninit+niter

f(ηi)

return η∗

objective function:
f(η) :
w := ClientUpdate(k,w0, η)

A := A(Dkvalid, w)
return A
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In algorithm 7, we give the pseudocode of the GlobalOptimization method in GlobalHPO
3 based on Bayesian optimization. The objective function f takes the learning rate η as
an argument, performs the FedAvg algorithm 1 with the learning rate η as an additional
argument, validates the performance of the model w on the validation data Dkvalid for all
clients k = 1, . . . ,K, computes the average accuracy of all clients and returns the resulting
accuracy. We initialize a gaussian process GP for the objective function f with ninit sample
points. Then, we find the next sample point ηninit+i by maximizing the acquisition function,
evaluate f(ηninit+i), and update the gaussian process GP . Finally, we select the learning
rate η∗ that yields the highest average accuracy. We repeat this for niter iterations.

Algorithm 7: Global Bayesian Optimization

GlobalOptimization() :
initialize a gaussian process GP for f
evaluate f at ninit initial points
for i = 1, . . . , niter do

find sample point ηninit+i that maximizes acquisition function
evaluate objective function f at ηninit+i

update the gaussian process GP

end
η∗ := arg max

i=1,...,ninit+niter

f(ηi)

return η∗

objective function:
f(η) :
w := FederatedAveraging(η)
for each client k = 1, . . . ,K do

Ak := A(Dkvalid, w)
end

A := 1
K

∑K
k=1A

k

return A
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3.3 Experiments

First, we want to demonstrate the effectiveness of the IFL system for the industrial machine
learning task. The cohort design of the IFL system aims at partitioning the available clients
into cohorts and restricting knowledge exchange only to clients within a cohort, and thus to
clients that have sufficiently similar data. Therefore, we partition the clients into cohorts
using the elbow method and k-means clustering algorithm based on the feature distribution.

The cohort algorithm partitioned our 9 clients into 3 cohorts. Cohort 0 includes 4 clients
with data generated by pump 1 and one client with data collaboratively generated by the
pumps 1, 2, 3. Cohort 1 includes 2 clients with data generated by pump 4 and one client
with data collaboratively generated by the pumps 1, 2, 3. Cohort 2 only consists of one
client. We consider the data of this client highly non-identically distributed regarding its
feature distribution due to its not-standardized measurement protocol. For the training,
we set R = 20, C = 1, E = 5, and B = 128 in the IFL system. In order to evaluate
the learning approaches in a direct comparison, we chose the number of epochs E in the
individual and central learning approach as E = EfedR where Efed is the number of epochs
in the federated learning approach and R is the number of communication rounds. In figure
3.2, the colors indicate the according cohort. Figure 3.2 shows the test accuracy on the
central cohort test data for each client, for i) a model trained on the individual training
data of the client ii) a central model trained on the collected training data of all clients in
the cohort iii) the federated model trained in the cohort. We observe that, in general, the
IFL approach performs better than the individual learning approach and approximates the
central learning approach. On client 6, the individual learning achieves a slightly better
accuracy than the federated learning, and all models perform well on client 8.

Figure 3.2: Comparison of individual learning, central
learning and federated learning on the in-
dustrial dataset
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Then, to systematically investigate the impact of global and local hyperparameter op-
timization, we want to compare the global and local hyperparameter optimization ap-
proach in an identically distributed FL setting, the MNIST machine learning task, as
well as in a non-identically distributed FL setting, the industrial task. Therefore, we im-
plemented the global and local optimization approach based on grid search with a grid
G := [0.0001, 0.001, 0.01, 0.1], and based on Bayesian optimization with the widely used
squared exponential kernel and the upper confidence bound acquisition function. We
searched for the learning rate η with fixed R, C, E and B.

In order to evaluate the global and local optimization approaches in a direct compari-
son, we chose the number of epochs E in the local optimization approach as E = EglobalR
where Eglobal is the number of epochs in the global optimization approach and R is the
number of communication rounds. In the global optimization task, we set R = 10, C = 1,
E = 1 and B = 128 for the MNIST data, and R = 10, C = 1, E = 5 and B = 128 for the
industrial data. In the local optimization task, we set E = 10 and B = 128 for the MNIST
data, and E = 50 and B = 128 for the industrial data. For the evaluation of the global
hyperparameter optimization approach, we optimized the learning rate using the global
approach, trained the federated model with a global learning rate, and tested the resulting
federated model on the cohort test data. Then, we optimized the learning rate using the
local approach, trained the federated model with local individual learning rates for each
client in the cohort, and tested the resulting federated model on the cohort test data.

Figure 3.3: Comparison of the optimization
approaches based on grid search
for the MNIST task

Figure 3.3 shows the results for the MNIST data. The optimization approaches are based
on the grid search algorithm. For the training posterior to the optimization, we set R = 10,
C = 1, E = 1, and B = 128 in the IFL system. The colour indicates the optimized learning
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rate on the corresponding client. Since the MNIST data is identically distributed, there
is only one cohort and all clients have the same federated model and thus the same test
accuracy. Our results show that the grid search algorithm selected 10−3 in the local op-
timization of the learning rate on each client. According to our expectation, the global
optimization approach yielded the same learning rate.

For the industrial task, we evaluated the global and local optimization approach based
on grid search and Bayesian optimization. For the training posterior to the optimization,
we set R = 20, C = 1, E = 5, and B = 128 in the IFL system. Figure 3.4 shows the
results for the industrial data with the optimization approaches based on the grid search
algorithm. The results show that, in all cohorts, the global approach yielded an equal or
larger accuracy than the local approach.

Figure 3.4: Comparison of the optimization
approaches based on grid search
for the industrial task

Figure 3.5 shows the results for the industrial data with the optimization approaches based
on the Bayesian algorithm. Note that the search space of the learning rate was [10−4, 10−1]
in the optimization while the scale in the plot starts from 10−3. The results show that the
global approach yielded a larger accuracy than the local approach in cohort 0 and cohort 1.
In cohort 2, however, the local optimization approach resulted in a learning rate of 0.0114
and yielded a test accuracy of 0.9736, and the global optimization approach resulted in a
learning rate of 0.0976 and yielded a test accuracy of 0.3867.

In order to compare the optimization approaches for the industrial task, we performed
a paired t-test regarding the test accuracy to determine the statistical significance, see
table 3.1. We observe that the global optimization approach is significantly better than
the local approach, both for the grid search approach (p = 0.028) and for the Bayesian
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Figure 3.5: Comparison of the optimization
approaches based on Bayesian op-
timization for the industrial task

approach (p = 0.012). Furthermore, the results show that the grid search approach is
significantly better than the Bayesian approach, both for the global approach (p = 0.004)
and for the local approach (p = 0.008). Note that we considered cohort 2 an outlier and
excluded this cohort from our calculations. Cohort 2 solely consists of client 8, a client
whose data was not generated according to the standard measurement protocol. Without
outlier removal, the global grid search approach is still significantly better than the local
grid search approach (p = 0.032), and the local grid search approach is significantly better
than the local Bayesian approach (p = 0.010). However, there is no significant difference
in the global Bayesian approach vs. the local Bayesian approach (p = 0.755) and in the
global grid search approach vs. the global Bayesian approach (p = 0.230).

client global grid local grid global Bayesian local Bayesian

1 0.7756 0.7720 0.7659 0.6897

2 0.7756 0.7720 0.7659 0.6897

3 0.7756 0.7720 0.7659 0.6897

4 0.7756 0.7720 0.7659 0.6897

5 0.8230 0.7921 0.7882 0.7889

6 0.8230 0.7921 0.7882 0.7889

7 0.8230 0.7921 0.7882 0.7889

8 0.9740 0.9749 0.3867 0.9736

9 0.7756 0.7720 0.7659 0.6897

Table 3.1: Test accuracy of federated model on central cohort test data posterior to corre-
sponding optimization approach and training
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4 Conclusion

The field of machine learning is constantly evolving and spreading into a growing appli-
cation sector driven by a wealth of available data. However, this data is often privacy
sensitive and therefore unsuitable for a central machine learning approach. McMahan et
al. [1] introduced FL that does not collect the data nor allow a server to access the data.
However, Zhao et al. [12] proved that heterogeneity significantly reduces the accuracy of
FL. Therefore, Hiessl et al. [8] introduced IFL that only orchestrates knowledge exchange
between clients that have sufficiently similar data. We demonstrated the effectiveness of
the IFL system for an IoT sensor based classification task on industrial assets. Based on
the cohort algorithm, the IFL system created 3 cohorts for the 9 available clients. We ob-
served that the cohort building prevents negative knowledge transfer and the results show
that the federated learning approach approximates the central learning approach, while
outperforming individual learning of the clients.

Hyperparameter selection is a crucial task in the optimization of knowledge-aggregation
algorithms. In a FL setting, hyperparameter optimization poses new challenges and is a
major open research area. Until now, there is no research about the impact of global and
local hyperparameter optimization of a FL task with heterogeneous clients. In this work, we
investigated the impact of global and local optimization approaches in an IFL System based
on a proxy dataset and a real-world problem. In our experiments on the industrial data,
local optimization yielded different learning rates on different clients in a cohort. However,
the results show that a globally optimized learning rate, and thus, a global learning rate for
all clients in a cohort improves the performance of the resulting federated model. There-
fore, we conclude that the global optimization approach outperforms the local optimization
approach. Consequently, we have to deal with a communication-performance trade-off in
the hyperparameter optimization in FL. The local optimization approach allows us to re-
duce communication costs but is outperformed by the global optimization approach. In
our experiments on the proxy dataset, however, the local approach achieved the same per-
formance as the global approach. We implemented the optimization approaches based on
the grid search algorithm and Bayesian optimization. The results show that the grid search
approaches outperform the Bayesian approaches, both globally and locally. However, we
only considered one hyperparameter in our optimization task. So, it would be interesting
to explore whether we can confirm these observations for a hyperparameter configuration
of more hyperparameters. Also, in Bayesian optimization, we only considered the upper
confidence bound acquisition function and only run the algorithm for 8 iterations.
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